4.4 Systèmes de coordonnées

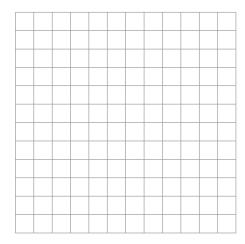
Rappel

Soient $\mathcal{E} = (\vec{e_1}, \vec{e_2})$ la base canonique de \mathbb{R}^2 et $\mathcal{B} = (\vec{b_1}, \vec{b_2})$ une base de \mathbb{R}^2 donnée par

$$\vec{b_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 et $\vec{b_2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

On vérifie que \mathcal{B} est bien une base de \mathbb{R}^2 . Pour le vecteur $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, on a les combinaisons linéaires

$$\vec{v} = \vec{e_1} + 2\vec{e_2}$$
 et $\vec{v} = \vec{b_1} + \vec{b_2}$.



Théorème 36. Soient V un espace vectoriel et soit $\mathcal{B} = (b_1, \ldots, b_n)$ une base de V. Alors pour tout $v \in V$ il existe $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ uniques tels que

Définition 44 (composantes dans une base).

Les scalaires $\alpha_1, \ldots, \alpha_n$ sont les composantes/coordonnées de l'élément v dans la base \mathcal{B} . On note

Exemples

L'application coordonnée

Définition 45 (application coordonnée).

Soient V un espace vectoriel et soit $\mathcal{B} = (b_1, \ldots, b_n)$ une base de V. On définit *l'application coordonnée*

Théorème 37. L'application $[\cdot]_{\mathcal{B}}$ est linéaire et bijective.

Preuve

Définition 46 (Isomorphisme).

Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire bijective. Alors T est dit un isomorphisme d'espaces vectoriels.

Exemple

Changement de bases

Exemple

Reprenons les bases $\mathcal{E} = (\vec{e_1}, \vec{e_2})$ et $\mathcal{B} = (\vec{b_1}, \vec{b_2})$ de \mathbb{R}^2 de l'exemple ci-dessus et $\vec{v} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$.

Généralisation à un espace vectoriel V quelconque
Soit V un espace vectoriel et \mathcal{B} et \mathcal{C} deux bases de V .
Changement de base de ${\cal B}$ à ${\cal C}$

Théorème 38. Soient V un espace vectoriel et $\mathcal{B} = (b_1, \ldots, b_n)$ et $\mathcal{C} = (c_1, \ldots, c_n)$ deux bases de V. Alors il existe une unique matrice $P_{\mathcal{CB}} \in M_{n \times n}(\mathbb{R})$ telle que

La matrice P_{CB} est donnée par

De plus, elle est inversible d'inverse $P_{\mathcal{BC}}$ où

Exemple

4.5 Dimension d'un espace vectoriel

Théorème 39. Soient V un espace vectoriel et $\mathcal{B} = (b_1, \ldots, b_n)$ une base de V. Alors toute famille d'éléments de V avec plus de n éléments sera linéairement dépendante.

Théorème 40. Soient V un espace vectoriel et $\mathcal{B} = (b_1, \ldots, b_n)$ une base de V. Alors toute autre base de V possède exactement n éléments.

Définition 47 (dimension).

Soit V un espace vectoriel.

- 1. Si V admet une famille génératrice avec un nombre fini d'éléments, on dira que V est de dimension finie. On notera sa dimension $\dim V$, où $\dim V$ est le nombre d'éléments dans une base quelconque de V.
- 2. Si V n'admet pas de famille génératrice finie, on dira que V est de dimension infinie et on note $\dim V = \infty$.
- 3. Si $V = \{0_V\}$, alors on dira que dimV = 0.

Exemples

Théorème 41 (Base incomplète).

Soient V un espace vectoriel de dimension finie et W un sous-espace vectoriel de V. Alors toute famille d'éléments linéairement indépendants de W peut être complétée en une base de W (et aussi de V). On a que

Exemple

Théorème 42. Soit V un espace vectoriel de dimension finie avec $\dim V = n$ pour $n \ge 1$. Alors

- 1. Toute famille linéairement indépendante d'exactement n éléments est une base de V.
- 2. Toute famille génératrice formée d'exactement n éléments est une base de V.

Dimension de Ker(A) et de Im(A)

Soit $A \in M_{m \times n}(\mathbb{R})$ avec $A = (\vec{a_1} \dots \vec{a_n})$.

Définition 48 (rang).

Soient V, W des espaces vectoriels et soit $T: V \to W$ une transformation linéaire. On appelle rang de T la dimension de Im(T).

Si $T: \mathbb{R}^n \to \mathbb{R}^m$ est linéaire et si $A \in M_{m \times n}(\mathbb{R})$ est la matrice canoniquement associée à T, on a $\operatorname{Im}(T) = \operatorname{Im}(A)$. On parlera alors du rang de A.

Exemple

Théorème 43 (du rang).

1. Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice. Alors

2. Soit $T: V \to W$ où V et W sont des espaces vectoriels avec V tel $que \dim(V) = n$.

Exemple

Théorème 44 (Suite du théorème 23).

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Alors les propriétés suivantes sont équivalentes :

- 1.
- 2.
- 3.
- 4.

Espaces des lignes de A et A^{\top}

Soit $A \in M_{m \times n}(\mathbb{R})$.

Définition 49 (espace des lignes).

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice. Le sous-espace de \mathbb{R}^n engendré par les lignes de A s'appelle l'espace des lignes et est donné par

Remarque

Théorème 45. Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice.

- 1. Si B est une matrice équivalente à A selon les lignes, alors leurs lignes engendrent le même espace.
- 2. On a

Preuve

Exemple

Remarque

4.6 Matrices d'applications linéaires et application coordonnée

Soient V, W des espaces vectoriels, $T: V \to W$ une application linéaire et $\mathcal{B} = (b_1, \dots b_n)$ resp. $\mathcal{C} = (c_1, \dots c_m)$ des bases de V et W.

Au niveau des coordonnées, l'application T est représentée par une matrice $M \in M_{m \times n}(\mathbb{R})$ telle que

On dira que M représente T dans les bases \mathcal{B} (de départ) et \mathcal{C} (d'arrivée). Déterminons les coefficients de la matrice M: Soit $v \in V$ avec $v = \alpha_1 b_1 + \dots \alpha_n b_n$, autrement dit

Alors par linéarité de T, on a

$$T(v) = T(\alpha_1 b_1 + \dots + \alpha_n b_n) = \alpha_1 T(b_1) + \dots + \alpha_n T(b_n).$$

Par linéarité de l'application coordonnée, il vient :

Remarques

Exemple

Remarque